Il n’y a pas que dans le cosmos que l’on traque la matière noire. Les investigations se déroulent aussi sur Terre. Et même sous terre.

Euclid, une mission de l’Agence spatiale européenne (ESA) a quitté la Terre le 1er juillet 2023 et tentera, en particulier, de mettre en évidence la matière noire galactique.

Ce n’est que dans les années 1970 que la question de l’existence de la matière noire suscite de l’intérêt. À ce propos, Matière Noire est une mauvaise traduction française de « Dark Matter » en anglais qui veut plutôt dire matière « invisible » ou « non observée / cachée ». Si la matière avait été « noire », on aurait écrit en anglais « black ».

L’astronome américaine Vera Rubin, doctorante dans les années 1970, étudie la rotation des galaxies spirales (il y a trois types de galaxies : spirale, elliptique et irrégulière ; notre galaxie, la Voie lactée, est de type spirale). L’étude de Vera Rubin s’attelle à la question de savoir si la « masse lumineuse », c’est-à-dire la masse visible – qui est déduite de la présence des étoiles – est bien égale à la masse dynamique (masse totale en étudiant la dispersion des vitesses).

En décrivant la vitesse de rotation de la galaxie en fonction de la distance au centre de la même galaxie, on fait une mesure directe de la distribution globale de matière dans la galaxie. La vitesse maximale de rotation d’une galaxie spirale se trouve à quelques kiloparsecs du centre (le parsec est une unité de longueur astronomique qui équivaut à 3,26 années de lumière, 206 265 unités astronomiques ou 30 900 milliards de km environ), puis elle est censée décroître. En effet, les étoiles à la périphérie de la galaxie sont en orbite autour du centre, de la même manière que les planètes sont en orbite autour du Soleil. Les étoiles en périphérie de la galaxie ont une vitesse orbitale inférieure à celles qui sont situées plus près de son centre.

1 parsec correspond à 1 seconde d'arc, calculée à partir de l'angle de parallaxe. // Source : Claire Braikeh pour Numerama
1 parsec correspond à 1 seconde d’arc, calculée à partir de l’angle de parallaxe. // Source : Claire Braikeh pour Numerama

Or, Vera Rubin observe que les étoiles situées à la périphérie de la galaxie d’Andromède – comme pour d’autres galaxies spirales – semblent tourner trop vite (les vitesses restaient pratiquement constantes au fur et à mesure que l’on s’éloignait du centre). Elle arrive à la conclusion qu’il manque de la masse pour expliquer ces vitesses de rotation. De nombreuses autres observations similaires sont effectuées dans les années 1980, venant renforcer celles de Vera Rubin. La quête de la matière noire est dès lors un objectif de recherche intense en astrophysique, en astroparticules et en physique des particules.

Depuis l’observation du fond diffus cosmologique ou rayonnement fossile (résidu d’un rayonnement émis par l’Univers lorsqu’il était dans une phase très chaude et dense, au tout début, juste 380 000 ans après le Big Bang) par des satellites tel que Planck, la matière noire semble représenter une masse environ six fois supérieure à celle de la matière visible ; elle devrait constituer environ 26 % de l’Univers et donc la matière que nous connaissons et qui constitue toutes les étoiles et les galaxies ne représente que 5 % du contenu de l’Univers. La matière noire n’interagit pas, ou extrêmement peu, avec la matière « ordinaire » (notre monde connu) rendant sa détection et sa caractérisation très difficiles. Sa présence n’est détectée que par son influence gravitationnelle.

Les recherches se déroulent également en grande partie sur Terre, et je dirais même plus précisément sous Terre, par exemple, à l’accélérateur LHC du CERN.